前言

这部分说明了文件整个系统的原理和底层大概逻辑。

文件系统基础

初识文件管理

文件——就是一组有意义的信息/数据集合。

文件的属性

文件名:由创建文件的用户决定文件名,主要是为了方便用户找到文件,同一目录下不允许有重名文件

标识符一个系统内的各文件标识符唯一,对用户来说毫无可读性,因此标识符只是操作系统用于区分各个文件的一种内部名称。

类型:指明文件的类型

位置:文件存放的路径(让用户使用)、在外存中的地址(操作系统使用,对用户不可见)

大小:指明文件大小

创建时间、上次修改时间,文件所有者信息

保护信息:对文件进行保护的访问控制信息

文件数据的组织

image-20230310181607787

无结构文件(如文本文件)——由一些二进制或字符流组成,又称“流式文件

image-20230310181618832

有结构文件(如数据库表)——由一组相似的记录组成,又称“记录式文件

用户可以自己创建一层一层的目录,各层目录中存放相应的文件。系统中的各个文件就通过一层一层的目录合理有序的组织起来了。目录其实也是一种特殊的有结构文件(由记录组成)。

文件的外存存放

类似于内存分为一个个“内存块”,外存会分为一个个“块/磁盘块/物理块”。每个磁盘块的大小是相等的,每块一般包含2的整数幂个地址、(如本例中,一块包含210个地址,即1KB)。同样类似的是,文件的逻辑地址也可以分为(逻辑块号,块内地址),操作系统同样需要将逻辑地址转换为外存的物理地址(物理块号,块内地址)的形式。块内地址的位数取决于磁盘块的大小

image-20230310182211732

其他功能

  • 文件共享:使多个用户可以共享使用一个文件
  • 文件保护:如何保证不同的用户对文件有不同的操作权限

文件的逻辑结构

所谓的“逻辑结构”,就是指在用户看来,文件内部的数据应该是如何组织起来的。而“物理结构”指的是在操作系统看来,文件的数据是如何存放在外存中的

无结构文件

文件内部的数据就是一系列二进制流或字符流组成。又称“流式文件”。如:Windows操作系统中的.txt文件。

有结构文件

有结构文件:由一组相似的记录组成,又称“记录式文件”。每条记录又若干个数据项组成。如:数据库表文件。一般来说,每条记录有一个数据项可作为关键字(作为识别不同记录的ID)

image-20230310182536246

一般来说,每条记录有一个数据项可作为关键字。根据各条记录的长度(占用的存储空间)是否相等,又可分为定长记录和可变长记录两种

image-20230310182756085

顺序文件

顺序文件:文件中的记录一个接一个地顺序排列(逻辑上),记录可以是定长的或可变长的。各个记录在物理上可以顺序存储或链式存储

  • 顺序存储一—逻辑上相邻的记录物理上也相邻(类似于顺序表)
  • 链式存储——逻辑上相邻的记录物理上不一定相邻(类似于链表)
image-20230310182856634 image-20230310183008254

顺序文件的缺点是增加/删除一个记录比较困难(如果是串结构则相对简单)。

索引文件

建立一张索引表以加快文件检索速度。每条记录对应一个索引项。文件中的这些记录在物理上可以离散地存放。

image-20230310190226314

索引表本身是定长记录的顺序文件。因此可以快速找到第i个记录对应的索引项

可将关键字作为索引号内容,若按关键字顺序排列,则还可以支持按照关键字折半查找。

每当要增加/删除一个记录时,需要对索引表进行修改。由于索引文件有很快的检索速度,因此主要用于对信息处理的及时性要求比较高的场合

另外,可以用不同的数据项建立多个索引表。如:学生信息表中,可用关键字“学号”建立一张索引表。也可用“姓名”建立一张索引表。这样就可以根据“姓名”快速地检索文件了。(Eg:SQL就支持根据某个数据项建立索引的功能)

索引文件的缺点:每个记录对应一个索引表项,因此索引表可能会很大。比如:文件的每个记录平均只占8B,而每个索引表项占32个字节,那么索引表都要比文件内容本身大4倍,这样对存储空间的利用率就太低了。

索引顺序文件

索引顺序文件是索引文件和顺序文件思想的结合。索引顺序文件中,同样会为文件建立一张索引表,但不同的是:并不是每个记录对应一个索引表项,而是一组记录对应一个索引表项

image-20230310190439543

多级索引顺序文件

为了进一步提高检索效率,可以为顺序文件建立多级索引表。例如,对于一个含106个记录的文件,可先为该文件建立一张低级索引表,每100个记录为一组,故低级索引表中共有10000个表项(即10000个定长记录),再把这10000个定长记录分组,每组100个,为其建立顶级索引表,故顶级索引表中共有100个表项。

image-20230310190630639

目录

文件目录

image-20230311122913729

文件控制块

目录本身就是一种有结构文件,由一条条记录组成。每条记录对应一个在该放在该目录下的文件。

目录文件中的一条记录就是一个“文件控制块(FCB)”

image-20230311123143090

FCB的有序集合称为“文件目录”,一个FCB就是一个文件目录项。FCB中包含了文件的基本信息(文件名、物理地址、逻辑结构、物理结构等),存取控制信息(是否可读/可写、禁止访问的用户名单等),使用信息(如文件的建立时间、修改时间等)。

最重要,最基本的还是文件名、文件存放的物理地址

【❓需要对目录进行哪些操作?❓】

  • 搜索:当用户要使用一个文件时,系统要根据文件名搜索目录,找到该文件对应的目录项
  • 创建文件:创建一个新文件时,需要在其所属的目录中增加一个目录项
  • 删除文件:当删除一个文件时,需要在目录中删除相应的目录项
  • 显示目录:用户可以请求显示目录的内容,如显示该目录中的所有文件及相应属性
  • 修改目录:某些文件属性保存在目录中,因此这些属性变化时需要修改相应的目录项(如:文件重命名)

目录结构

单级目录结构

早期操作系统并不支持多级目录,整个系统中只建立一张目录表,每个文件占一个目录项。

image-20230311123507480

单级目录实现了“按名存取”,但是不允许文件重名

在创建一个文件时,需要先检查目录表中有没有重名文件,确定不重名后才能允许建立文件,并将新文件对应的目录项插入目录表中。

单级目录结构不适用于多用户操作系统

两级目录结构

早期的多用户操作系统,采用两级目录结构。分为主文件目录(MFD,Master File Directory)和用户文件目录(UFD,User Flie Directory)

image-20230311123622392

允许不同用户的文件重名。文件名虽然相同,但是对应的其实是不同的文件。

两级目录结构允许不同用户的文件重名,也可以在目录上实现实现访问限制(检查此时登录的用户名是否匹配)。但是两级目录结构依然缺乏灵活性,用户不能对自己的文件进行分类。

多级目录结构

又称:树形目录结构。

image-20230311123840686

用户(或用户进程)要访问某个文件时要用文件路径名标识文件,文件路径名是个字符串。各级目录之间用“/”隔开。从根目录出发的路径称为绝对路径

例如:自拍.jpg的绝对路径是“/照片/2015—08/自拍.jpg”

系统根据绝对路径一层一层地找到下一级目录。刚开始从外存读入根目录的目录表;找到“照片”目录的存放位置后,从外存读入对应的目录表;再找到“2015—08”目录的存放位置,再从外存读入对应目录表;最后才找到文件“自拍.jpg”的存放位置。整个过程需要3次读磁盘I/O操作。

很多时候,用户会连续访问同一目录内的多个文件(比如:接连查看“2015—08”目录内的多个照片文件),显然,每次都从根目录开始查找,是很低效的。因此可以设置一个“当前目录”

例如,此时已经打开了“照片”的目录文件,也就是说,这张目录表已调入内存,那么可以把它设置为“当前目录”。当用户想要访问某个文件时,可以使用从当前目录出发的“相对路径”

树形目录结构可以很方便地对文件进行分类,层次结构清晰,也能够更有效地进行文件的管理和保护。但是,树形结构不便于实现文件的共享。为此,提出了“无环图目录结构”。

无环图目录结构

image-20230311124217771

可以用不同的文件名指向同一个文件,甚至可以指向同一个目录(共享同一目录下的所有内容)。

需要为每个共享结点设置一个共享计数器,用于记录此时有多少个地方在共享该结点。用户提出删除结点的请求时,只是删除该用户的FCB、并使共享计数器减1,并不会直接删除共享结点

只有共享计数器减为0时,才删除结点

注意:共享文件不同于复制文件。在共享文件中,由于各用户指向的是同一个文件,因此只要其中一个用户修改了文件数据,那么所有用户都可以看到文件数据的变化

索引结点(FCB的改进)

其实在查找各级目录的过程中只需要用到“文件名”这个信息,只有文件名匹配时,才需要读出文件的其他信息。因此可以考虑让目录表“瘦身”来提升效率。

image-20230311124417068

若使用索引结点机制,文件名占14B,索引结点指针站2B,则每个盘块可存放64个目录项,那么按文件名检索目录平均只需要读入320/64=5个磁盘块。显然,这将大大提升文件检索速度。

当找到文件名对应的目录项时,才需要将索引结点调入内存,索引结点中记录了文件的各种信息,包括文件在外存中的存放位置,根据“存放位置”即可找到文件。

存放在外存中的索引结点称为“磁盘索引结点”,当索引结点放入内存后称为“内存索引结点”
相比之下内存索引结点中需要增加一些信息,比如:文件是否被修改、此时有几个进程正在访问该文件等。

文件的物理结构

image-20230311135534529

类似于内存分页,磁盘中的存储单元也会被分为一个个“块/磁盘块/物理块”。很多操作系统中,磁盘块的大小与内存块、页面的大小相同

在外存管理中,为了方便对文件数据的管理,文件的逻辑地址空间也被分为了一个一个的文件“块”。于是文件的逻辑地址也可以表示为(逻辑块号,块内地址)的形式。

用户通过逻辑地址来操作自己的文件,操作系统要负责实现从逻辑地址到物理地址的映射。

连续分配

连续分配方式要求每个文件在磁盘上占有一组连续的块

image-20230311135919473 image-20230311140004107

用户给出要访问的逻辑块号,操作系统找到该文件对应的目录项(FCB)…

$物理块号 = 起始块号 + 逻辑块号$

可以直接算出逻辑块号对应的物理块号,因此连续分配支持顺序访问和直接访问(即随机访问)

读取某个磁盘块时,需要移动磁头。访问的两个磁盘块相隔越远,移动磁头所需时间就越长。

结论:连续分配的文件在顺序读/写时速度最快

结论:物理上采用连续分配的文件不方便拓展

结论:物理上采用连续分配,存储空间利用率低,会产生难以利用的磁盘碎片;可以用紧凑来处理碎片,但是需要耗费很大的时间代价

优点:

  • 支持顺序访问和直接访问(即随机访问);
  • 连续分配的文件在顺序访问时速度最快

缺点:

  • 不方便文件拓展;
  • 存储空间利用率低,会产生磁盘碎片;

链接分配

链接分配采取离散分配的方式,可以为文件分配离散的磁盘块。分为隐式链接和显式链接两种。

image-20230311145937211

隐式链接

用户给出要访问的逻辑块号i,操作系统找到该文件对应的目录项(FCB)…

从目录项中找到起始块号(即0号块),将0号逻辑块读入内存,由此知道1号逻辑块存放的物理块号,于是读入1号逻辑块,再找到2号逻辑块的存放位置.......以此类推。

因此,读入i号逻辑块,总共需要 $i+1$ 次磁盘 I/O。

结论:采用链式分配(隐式链接)方式的文件,只支持顺序访问,不支持随机访问,查找效率低。另外,指向下一个盘块的指针也需要耗费少量的存储空间

若此时要拓展文件,则可以随便找一个空闲磁盘块,挂到文件的磁盘块链尾,并修改文件的FCB。

结论:采用隐式链接的链接分配方式,很方便文件拓展。另外,所有的空闲磁盘块都可以被利用,不会有碎片问题,外存利用率高

显式链接

把用于链接文件各物理块的指针显式地存放在一张表中。即文件分配表(FAT,File Allocation Table)。

注意:一个磁盘仅设置一张FAT。开机时,将FAT读入内存,并常驻内存

FAT的各个表项在物理上连续存储,且每一个表项长度相同,因此“物理块号”字段可以是隐含的。

用户给出要访问的逻辑块号i,操作系统找到该文件对应的目录项(FCB)…

从目录项中找到起始块号,若 $i>0$,则查询内存中的文件分配表FAT,往后找到i号逻辑块对应的物理块号。逻辑块号转换成物理块号的过程不需要读磁盘操作

结论:采用链式分配(显式链接)方式的文件,支持顺序访问,也支持随机访问(想访问i号逻辑块时,并不需要依次访问之前的 0 ~ $i - 1$ 号逻辑块),由于块号转换的过程不需要访问磁盘,因此相比于隐式链接来说,访问速度快很多。

显然,显式链接也不会产生外部碎片,也可以很方便地对文件进行拓展

缺点:文件分配表的需要占用一定的存储空间。

索引分配

索引分配允许文件离散地分配在各个磁盘块中,系统会为每个文件建立一张索引表,索引表中记录了文件的各个逻辑块对应的物理块(索引表的功能类似于内存管理中的页表——建立逻辑页面到物理页之间的映射关系)。索引表存放的磁盘块称为索引块。文件数据存放的磁盘块称为数据块

image-20230311162019066

可以用固定的长度表示物理块号(如:假设磁盘总容量为1TB=240B,磁盘块大小为1KB,则共有230个磁盘块,则可用4B表示磁盘块号),因此,索引表中的“逻辑块号”可以是隐含的。

用户给出要访问的逻辑块号i,操作系统找到该文件对应的目录项(FCB)…

从目录项中可知索引表存放位置,将索引表从外存读入内存,并查找索引表即可只i号逻辑块在外存中的存放位置。

可见,索引分配方式可以支持随机访问文件拓展也很容易实现(只需要给文件分配一个空闲块,并增加一个索引表项即可)但是索引表需要占用一定的存储空间

【❓若每个磁盘块1KB,一个索引表项4B,则一个磁盘块只能存放256个索引项。如果一个文件的大小超过了256块,那么一个磁盘块是装不下文件的整张索引表的,如何解决这个问题?❓】

  • 链接方案:如果索引表太大,一个索引块装不下,那么可以将多个索引块链接起来存放。缺点:若文件很大,索引表很长,就需要将很多个索引块链接起来。想要找到i号索引块,必须先依次读入0~i—1号索引块,这就导致磁盘I/O次数过多,查找效率低下
  • 多层索引:建立多层索引(原理类似于多级页表)。使第一层索引块指向第二层的索引块。还可根据文件大小的要求再建立第三层、第四层索引块。采用K层索引结构,且顶级索引表未调入内存,则访问一个数据块只需要K+1次读磁盘操作。缺点:即使是小文件,访问一个数据块依然需要K+1次读磁盘
  • 混合索引:多种索引分配方式的结合。例如,一个文件的顶级索引表中,既包含直接地址索引(直接指向数据块),又包含一级间接索引(指向单层索引表)、还包含两级间接索引(指向两层索引表)。优点:对于小文件来说,访问一个数据块所需的读磁盘次数更少

链接方案

如果索引表太大,一个索引块装不下,那么可以将多个索引块链接起来存放

多层索引

多层索引:建立多层索引(原理类似于多级页表)。使第一层索引块指向第二层的索引块。还可根据文件大小的要求再建立第三层、第四层索引块。

若某文件采用两层索引,则该文件的最大长度可以到 $256 \times 256 \times 1KB=65,536 KB=64MB$.

image-20230311162714470

采用 $K$ 层索引结构,且顶级索引表未调入内存,则访问一个数据块只需要 $K+1$ 次读磁盘操作

混合索引

混合索引:多种索引分配方式的结合。例如,一个文件的顶级索引表中,既包含直接地址索引(直接指向数据块),又包含一级间接索引(指向单层索引表)、还包含两级间接索引(指向两层索引表)。

image-20230311163026840

对于小文件,只需较少的读磁盘次数就可以访问目标数据块。(一般计算机中小文件更多)

文件存储空间管理

image-20230311163727585

安装Windows操作系统的时候,一个必经步骤是——为磁盘分区(C:盘、D:盘、E:盘等)

存储空间的划分:将物理磁盘划分为一个个文件卷(逻辑卷、逻辑盘)

image-20230311163901602

空闲表法

image-20230311164032185

适用于“连续分配方式”。

如何分配磁盘块:与内存管理中的动态分区分配很类似,为一个文件分配连续的存储空间。同样可采用首次适应、最佳适应、最坏适应等算法来决定要为文件分配哪个区间。

如何回收磁盘块:与内存管理中的动态分区分配很类似,当回收某个存储区时需要有四种情况

  1. 回收区的前后都没有相邻空闲区;
  2. 回收区的前后都是空闲区;
  3. 回收区前面是空闲区;
  4. 回收区后面是空闲区。

总之,回收时需要注意表项的合并问题

空闲链表法

image-20230311164411425

空闲盘块链

image-20230311164450220

操作系统保存着链头、链尾指针

如何分配:若某文件申请K个盘块,则从链头开始依次摘下K个盘块分配,并修改空闲链的链头指针。

如何回收:回收的盘块依次挂到链尾,并修改空闲链的链尾指针。

适用于离散分配的物理结构。为文件分配多个盘块时可能要重复多次操作

空闲盘区链

image-20230311164532144

操作系统保存着链头、链尾指针

如何分配:若某文件申请K个盘块,则可以采用首次适应、最佳适应等算法,从链头开始检索,按照算法规则找到一个大小符合要求的空闲盘区,分配给文件。若没有合适的连续空闲块,也可以将不同盘区的盘块同时分配给一个文件,注意分配后可能要修改相应的链指针、盘区大小等数据。

如何回收:若回收区和某个空闲盘区相邻,则需要将回收区合并到空闲盘区中。若回收区没有和任何空闲区相邻,将回收区作为单独的一个空闲盘区挂到链尾。

离散分配、连续分配都适用。为一个文件分配多个盘块时效率更高

位示图法

image-20230311170354209

位示图:每个二进制位对应一个盘块。在本例中,“0”代表盘块空闲,“1”代表盘块已分配。位示图一般用连续的“字”来表示,如本例中一个字的字长是16位,字中的每一位对应一个盘块。因此可以用(字号,位号)对应一个盘块号。当然有的题目中也描述为(行号,列号)

如本例中盘块号、字号、位号从0开始,若n表示字长,则:

  • (字号,位号)=(i,j)的二进制位对应的盘块号$b=ni+j$

  • b号盘块对应的字号$i=b/n$,位号$j=b%n$

如何分配:若文件需要K个块,

  1. 顺序扫描位示图,找到K个相邻或不相邻的“0”;
  2. 根据字号、位号算出对应的盘块号,将相应盘块分配给文件;
  3. 将相应位设置为“1”。

如何回收:

  1. 根据回收的盘块号计算出对应的字号、位号;
  2. 将相应二进制位设为“0”

连续分配、离散分配都适用

成组链接法

空闲表法、空闲链表法不适用于大型文件系统,因为空闲表或空闲链表可能过大。UNIX系统中采用了成组链接法对磁盘空闲块进行管理。

image-20230311171414890

文件卷的目录区中专门用一个磁盘块作为“超级块”当系统启动时需要将超级块读入内存。并且要保证内存与外存中的“超级块”数据一致。

image-20230311171545364

如何分配?
Eg:需要100个空闲块

  1. 检查第一个分组的块数是否足够。100=100,是足够的。
  2. 分配第一个分组中的100个空闲块。但是由于300号块内存放了再下一组的信息,因此300号块的数据需要复制到超级块中。

如何回收?
Eg:假设每个分组最多为100个空闲块,此时第一个分组已有100个块,还要再回收一块。

需要将超级块中的数据复制到新回收的块中,并修改超级块的内容,让新回收的块成为第一个分组。

文件的基本操作

image-20230311173558987

创建文件

进行Create系统调用时,需要提供的几个主要参数:

  1. 所需的外存空间大小(如:一个盘块,即1KB)
  2. 文件存放路径(“D:/Demo”)
  3. 文件名(这个地方默认为“新建文本文档.txt”)

操作系统在处理Create系统调用时,主要做了两件事:

  1. 在外存中找到文件所需的空间(结合空闲链表法、位示图、成组链接法等管理策略,找到空闲空间)
  2. 根据文件存放路径的信息找到该目录对应的目录文件(此处就是D:/Demo目录),在目录中创建该文件对应的目录项。目录项中包含了文件名、文件在外存中的存放位置等信息。

删除文件

进行 Delete 系统调用时,需要提供的几个主要参数:

  1. 文件存放路径(“D:/Demo” )
  2. 文件名(“test.txt”)

操作系统在处理Delete系统调用时,主要做了几件事:

  1. 根据文件存放路径找到相应的目录文件,从目录中找到文件名对应的目录项。
  2. 根据该目录项记录的文件在外存的存放位置、文件大小等信息,回收文件占用的磁盘块。(回收磁盘块时,根据空闲表法、空闲链表法、立图法等管理策略的不同,需要做不同的处理)

打开文件

在很多操作系统中,在对文件进行操作之前,要求用户先使用open系统调用“打开文件”,需要提供的几个主要参数:

  1. 文件存放路径(“D:/Demo”)
  2. 文件名(“test.txt”)
  3. 要对文件的操作类型(如:r只读;rw读写等)

操作系统在处理open系统调用时,主要做了几件事:

  1. 根据文件存放路径找到相应的目录文件,从目录中找到文件名对应的的目录项,并检查该用户是否有指定的操作权限。
  2. 将目录项复制到内存中的“打开文件表”中。并将对应表目的编号返回给用户。之后用户使用打开文件表的编号来指明要操作的文件。
image-20230311174003578 image-20230311174128425

关闭文件

进程使用完文件后,要“关闭文件”
操作系统在处理Close系统调用时,主要做了几件事:

  1. 将进程的打开文件表相应表项删除
  2. 回收分配给该文件的内存空间等资源
  3. 系统打开文件表的打开计数器 count减1,若count=0, 则删除对应表项。

读文件

image-20230311174911402

进程使用read系统调用完成写操作。需要指明是哪个文件(在支持“打开文件”操作的系统中,只需要提供文件在打开文件表中的索引号即可),还需要指明要读入多少数据(如:读入1KB)、指明读入的数据要放在内存中的什么位置。

操作系统在处理read系统调用时,会从读指针指向的外存中,将用户指定大小的数据读入用户指定的内存区域中。

写文件

image-20230311175255102

进程使用write系统调用完成写操作,需要指明是哪个文件(在支持“打开文件”操作的系统中,只需要提供文件在打开文件表中的索引号即可),还需要指明要写出多少数据(如:写出1KB)、写回外存的数据放在内存中的什么位置。

操作系统在处理write系统调用时,会从用户指定的内存区域中,将指定大小的数据写回写指针指向的外存。

文件共享

image-20230311175404085

注意:多个用户共享同一个文件,意味着系统中只有“一份”文件数据。并且只要某个用户修改了该文件的数据,其他用户也可以看到文件数据的变化。

基于索引结点的共享方式(硬链接)

image-20230311182444677

索引结点中设置一个链接计数变量count,用于表示链接到本索引结点上的用户目录项数。

若count=2,说明此时有两个用户目录项链接到该索引结点上,或者说是有两个用户在共享此文件。若某个用户决定“删除”该文件,则只是要把用户目录中与该文件对应的目录项删除,且索引结点的count值减1。

若count>0,说明还有别的用户要使用该文件,暂时不能把文件数据删除,否则会导致指针悬空。count=0 时系统负责删除文件。

基于符号链的共享方式(软链接)

image-20230311182545203

当User3访问“ccc”时,操作系统判断文件“ccc”属于Link类型文件,于是会根据其中记录的路径层层查找目录,最终找到User1的目录表中的“aaa”表项,于是就找到了文件1的索引结点。

文件保护

image-20230311183615902

口令保护

为文件设置一个“口令”(如:abc112233),用户请求访问该文件时必须提供“口令”。

口令一般存放在文件对应的FCB或索引结点中。用户访问文件前需要先输入“口令”,操作系统会将用户提供的口令与FCB中存储的口令进行对比,如果正确,则允许该用户访问文件

优点:保存口令的空间开销不多,验证口令的时间开销也很小

缺点:正确的“口令”存放在系统内部,不够安全

加密保护

使用某个“密码”对文件进行加密,在访问文件时需要提供正确的“密码”才能对文件进行正确的解密

image-20230311184217461

优点:保密性强,不需要在系统中存储“密码”

缺点:编码/译码,或者说加密/解密要花费一定时间

访问控制

在每个文件的FCB(或索引结点)中增加一个访问控制列表(Access—Control List,ACL),该表中记录了各个用户可以对该文件执行哪些操作

image-20230311184359943

有的计算机可能会有很多个用户,因此访问控制列表可能会很大,可以用精简的访问列表解决这个问题。

精简的访问列表:以“组”为单位,标记各“组”用户可以对文件执行哪些操作。如:分为系统管理员、文件主、文件主的伙伴、其他用户几个分组。

文件系统

文件系统的层次结构

image-20230311185648017

假设某用户请求删除文件“D:/工作目录/学生信息.xlsx”的最后100条记录。

  1. 用户需要通过操作系统提供的接口发出上述请求——用户接口
  2. 由于用户提供的是文件的存放路径,因此需要操作系统一层一层地查找目录,找到对应的目录项–文件目录系统
  3. 不同的用户对文件有不同的操作权限,因此为了保证安全,需要检查用户是否有访问权限——存取控制模块(存取控制验证层)
  4. 验证了用户的访问权限之后,需要把用户提供的“记录号”转变为对应的逻辑地址——逻辑文件系统与文件信息缓冲区
  5. 知道了目标记录对应的逻辑地址后,还需要转换成实际的物理地址——物理文件系统6.要删除这条记录,必定要对磁盘设备发出请求——设备管理程序模块
  6. 删除这些记录后,会有一些盘块空闲,因此要将这些空闲盘块回收——辅助分配模块

文件系统的全局结构

原始磁盘

物理格式化

物理格式化,即低级格式化——划分扇区,检测坏扇区,并用备用扇区替换坏扇区。

image-20230311191904822

逻辑格式化

逻辑格式化后,磁盘分区(分卷Volume),完成各分区的文件系统初始化注:逻辑格式化后,灰色部分就有实际数据了,白色部分还没有数据。

image-20230311191928492

文件系统在内存中的结构

image-20230311192424458

注:近期访问过的目录文件会缓存在内存中,不用每次都从磁盘读入,这样可以加快目录检索速度

虚拟文件系统

普通文件系统

image-20230311192815954

虚拟文件系统

image-20230311193023469

虚拟文件系统的特点:

  1. 向上层用户进程提供统一标准的系统调用接口,屏蔽底层具体文件系统的实现差异。

  2. VFS要求下层的文件系统必须实现某些规定的函数功能,如:open/read/write。一个新的文件系统想要在某操作系统上被使用,就必须满足该操作系统VFS的要求。

  3. 每打开一个文件,VFS就在主存中新建一个vnode,用统一的数据结构表示文件,无论该文件存储在哪个文件系统。

    image-20230311194128387

vnode只存在于主存中,而inode既会被调入主存,也会在外存中存储

文件系统的挂载

文件系统挂载(mounting),即文件系统安装/装载——如何将一个文件系统挂载到操作系统中?

文件系统挂载要做的事:

  1. 在VFS中注册新挂载的文件系统。内存中的挂载表(mount table)包含 每个文件系统的相关信息,包括文件系统类型、容量大小等
  2. 新挂载的文件系统,要向 VFS 提供一个函数地址列表
  3. 将新文件系统加到挂载点(mountpoint),也就是将新文件系统挂载在某个父目录下

End

快马加鞭!!!